Introduction – Company Background
GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.
With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.
With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.
From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.
At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.
By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.
Core Strengths in Insole Manufacturing
At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.
Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.
We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.
With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.
Customization & OEM/ODM Flexibility
GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.
Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.
With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.
Quality Assurance & Certifications
Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.
We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.
Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.
ESG-Oriented Sustainable Production
At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.
To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.
We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.
Let’s Build Your Next Insole Success Together
Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.
From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.
Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.
🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw
Vietnam insole ODM design and production
Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.
With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.PU insole OEM production in Taiwan
Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.
We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Graphene insole manufacturer in Thailand
At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.China insole ODM design and production
📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Taiwan anti-bacterial pillow ODM production factory
Plant material from Yale-Myers Forest and YSE greenhouses were used to study how their vascular systems are constructed and how they compare to the extinct plants from the fossil record. Without developing their vascular systems, plants would largely still look like mosses. Shown here: Huperzia lucidula, also known as Shining club-moss. Credit: Craig Brodersen Lab. A recent study has solved a longstanding mystery in paleontology, revealing how early plants were able to transition from aquatic environments to land through changes in their vascular systems. For many years, scientists have been trying to understand how early land plants were able to adapt to new habitats and move beyond their original moist, boggy environments. These plants were small, usually no more than a few centimeters tall, and were found near streams and ponds. However, about 400 million years ago, they developed vascular systems that allowed them to extract water more efficiently from the soil and use it for photosynthesis, a change that had a significant impact on the Earth’s atmosphere and ecosystems. A team of researchers has now solved a 100-year-old mystery in paleontology by uncovering how these ancient plants were able to thrive in new habitats with limited access to water. A study published in Science by a team of researchers from Yale University has found that a small change in the vascular system of plants made them more resistant to drought, allowing them to thrive in new, drier environments. The team was led by Yale School of the Environment Professor Craig Brodersen and included lead author Martin Bouda and Kyra Prats. The findings have opened up new avenues for exploration in this field. The research was spurred by a century-long debate about why the simple, cylindrical vascular system of the earliest land plants rapidly changed to more complex shapes. In the 1920s, scientists noted this increasing complexity in the fossil record but were not able to pinpoint the reason — if there even was one — for the evolutionary changes. Xylem Function and the Challenge of Drought Over the past decade, Brodersen and colleagues have explored the implications of how modern plant vascular systems are constructed, especially within the context of drought. When plants begin to dry out, air bubbles get stuck in the xylem, which is the specialized tissue that transports water and nutrients from the soil to stems and leaves. The bubbles block the movement of water. Left unchecked, they spread throughout the network, disconnect plants from the soil, and ultimately lead to plant death. Avoiding the formation and spread of these bubbles is of critical importance for tolerating drought today, and the research team applied this same thinking to explain the patterns of vascular organization in the fossil record. Cross section through the leaf of Cheilanthes lanosa, also known as Hairy lip fern, showing a heart-shaped vascular system in the xylem. Credit: Craig Brodersen Lab Revolutionary Shifts in Vascular Complexity The cylinder-shaped vascular systems in the earliest land plants, which were similar to a bundle of straws, had initially served them well in their early watery habitats. But as they moved onto land with fewer water resources, the plants had to overcome drought-induced air bubbles. Early land plants did this by reconfiguring the ancestral, cylindrical-shaped xylem into more complex shapes that prevented air bubbles from spreading. Historically, observations of increasing vascular complexity in the fossil record were thought to be coincidental and of marginal significance, a byproduct of plants growing in size and developing more complex architecture. The new study reverses this view. “It didn’t just sort of happen. There’s actually a good evolutionary reason,” says Bouda. “There was strong pressure from drought that made it happen. That was the hundred-year-old riddle, which we’ve now answered.” Bouda notes that the makeup of the team of researchers who co-authored the study, which included a paleobotanist, plant physiologists, and a hydrologist, helped provide techniques and perspectives that led them to uncover the reason for the complex vascular structure that had emerged in Devonian-era plants. The team used microscopy and anatomical analysis to view the inner workings of plant specimens, which included fossil specimens from the Yale Peabody Museum, and living plants from Yale Myers Forest, the Marsh Botanical Garden, the New York Botanical Garden, and the University of Connecticut. Using this information, the team then predicted vascular configurations that could tolerate drought and illustrated how seemingly simple changes in shape lead to profound improvements in drought tolerance. “Every time a plant deviates from that cylindrical vascular system, every time it changes just a little bit, the plant gets a reward in terms of its ability to survive drought. And if that reward is constantly there, then it’s going to force plants in the direction away from the ancient cylindrical vascular system toward these more complex forms,” says Brodersen. “By making these very small changes, plants solved this problem that they had to figure out very early in the history of the earth, otherwise the forests that we see today just wouldn’t exist.” Implications for Modern Agriculture and Climate Resilience These changes happened rather rapidly — in paleontological timeframes, that is — over approximately 20-40 million years. The driving forces behind the change to plant vascular structure could help inform research in breeding drought-resistant plants, helping to build resilience to the impacts of climate change and address production-related food insecurity issues. “Now that we have a better understanding of how the vascular systems are put together and how that influences a plant’s ability to tolerate drought, that’s the kind of thing that could be used as a target for breeding programs — for example, making better root systems, making better vascular systems in plants,” Brodersen says. Reference: “Hydraulic failure as a primary driver of xylem network evolution in early vascular plants” by Martin Bouda, Brett A. Huggett, Kyra A. Prats, Jay W. Wason, Jonathan P. Wilson and Craig R. Brodersen, 10 November 2022, Science. DOI: 10.1126/science.add2910
Candida albicans usually co-exists peacefully in the body, but under the right conditions it transforms into hyphae, the dark red filaments pictured above, which can form harmful biofilms. Research shows that a gut hormone called peptide YY also plays a vital role in maintaining the health of the gut microbiome by preventing helpful fungi from turning into more dangerous, disease-causing forms. Peptide YY (PYY), a hormone produced by gut endocrine cells that was already known to control appetite, also plays an important role in maintaining the balance of fungi in the digestive system of mammals, according to new research from the University of Chicago. In a study published in the journal Science, researchers found that specialized immune cells in the small intestine called Paneth cells express a form of PYY that prevents the fungus Candida albicans from turning into its more virulent form. PYY was already known to be produced by endocrine cells in the gut as a hormone that signals satiety, or when an animal has had enough to eat. The new research shows that it also functions as an antimicrobial peptide that selectively allows commensal yeast forms of C. albicans to flourish while keeping its more dangerous forms in check. “So little is known about what regulates these fungi in our in our microbiome. We know that they’re there, but we have no idea what keeps them in a state that provides health benefit to us,” said Eugene B. Chang, MD, Martin Boyer Professor of Medicine at UChicago and senior author of the study. “We now think that this peptide we discovered is actually important for maintaining fungal commensalism in the gut.” Regulating the ‘Mycobiome’ Chang and his team didn’t set to explore the fungal side of the gut microbiome, or “mycobiome” as he calls it. Joseph Pierre, PhD, a former postdoctoral scholar in Chang’s lab who is now an Assistant Professor of Nutritional Sciences at the University of Wisconsin-Madison, was studying the enteroendocrine cells in mice that produce PYY when he noticed that it was also present in Paneth cells. These are important immune system defenders in the gut of mammals, secreting several antimicrobial compounds to prevent dangerous bacteria from flourishing. At first this didn’t make sense, because until then, PYY was only recognized as an appetite hormone. When they tested it against a variety of bacteria, it wasn’t very good at killing them either. But when they ran a computer search for other classes of peptides with a similar structure, they discovered one similar to PYY called magainin 2, which is found on the skin of the African clawed frog. This peptide protects the frogs from infection by both bacteria and fungi, so Chang’s team thought to test PYY’s antifungal properties too. As it turns out, it is not only an effective antifungal agent, but a very specific one as well. “So little is known about what regulates these fungi in our in our microbiome. We know that they are there, but we have no idea what keeps them in a state that provides health benefit to us.” Eugene B. Chang, MD C. albicans is a yeast that typically grows in small amounts in the mouth, on the skin, and in the intestines. The basic yeast form is commensal, or coexists peacefully in the body, but given the right conditions it transforms into what are called hyphae that branch out to form biofilms. When too much grows, it causes thrush, an infection in the mouth and throat, vaginal yeast infections, or more serious generalized infections in the body. When Chang’s team tested PYY against both forms of the fungus, it effectively prevented growth and killed the more dangerous hyphae while sparing the commensal Candida yeast. “This is a unique example of an ‘innate’ antimicrobial peptide secreted by Paneth cells that specifically kills the virulent form of this fungi and has no effect on the on the commensal form,” Chang said. Making the Most Out of Your Molecules While PYY could be useful as a tool to combat fungal infections, its newly discovered function may play a role in digestive diseases as well. Patients with Crohn’s disease of the ileum, the last portion of the small intestine, often have dysfunctional Paneth cells. Chang said it’s possible that this dysfunction, and lack of PYY, could create an environment for fungi to overgrow and trigger the onset of disease. The full, unmodified version of PYY has 36 amino acids, and when Paneth cells secrete it into the gut it’s an effective antifungal peptide. But when endocrine cells produce PYY, an enzyme clips off two amino acids to turn it into a hormone that can travel through the bloodstream and tell the brain you’re not hungry. Just like discovering its function from a frog, Chang hopes more research on this peptide will turn up more surprises. “This is an example of the wisdom and beauty of nature that has repurposed a molecule, so it has two different functions,” he said. “That’s really cool, because this is an efficient way of making the most out of things you already have.” Reference: “Peptide YY: A Paneth cell antimicrobial peptide that maintains Candida gut commensalism” by Joseph F. Pierre, Brian M. Peters, Diana La Torre, Ashley M. Sidebottom, Yun Tao, Xiaorong Zhu, Candace M. Cham, Ling Wang, Amal Kambal, Katharine G. Harris, Julian F. Silva, Olga Zaborina, John C. Alverdy, Herbert Herzog, Jessica Witchley, Suzanne M. Noble, Vanessa A. Leone and Eugene B. Chang, 3 August 2023, Science. DOI: 10.1126/science.abq3178 The study was supported by the National Institutes of Health, the Kenneth Rainin Foundation, and the University of Chicago Gastrointestinal Research Foundation. Additional authors include Brian M. Peters from the University of Tennessee; Diana La Torre, Ashley M. Sidebottom, Yun Tao, Xiaorong Zhu, Candace M. Cham, Ling Wang, Amal Kambal, Julian F. Silva, Olga Zaborina, and John C. Alverdy from the University of Chicago; Katharine G. Harris from Franklin College; Herbert Herzog from the Garvan Institute of Medical Research; Suzanne M. Noble and Jessica Witchley from the University of California-San Francisco; and Vanessa A. Leone from the University of Wisconsin – Madison.
Researchers at Scripps Research have created a novel instrument to monitor brain plasticity. Researchers at Scripps Research examined how the levels of various proteins in brain cells change in response to brain activity. Scripps Research Institute scientists have created a new tool to monitor brain plasticity—the process by which our brains remodel and physically adjust when we learn and experience new things, such as viewing a movie or learning a new song or language. Their method, which examines the proteins generated by various brain cell types, has the potential to provide fundamental explanations for how the brain functions as well as provide insight into the many diseases of the brain where plasticity malfunctions. Previous research conducted in a number of laboratories has shown how brain activity triggers changes in gene expression in neurons, an early step in plasticity. The team’s research, which was recently published in the Journal of Neuroscience, focuses on the next important stage of plasticity—the conversion of the genetic code into proteins. “We still don’t understand all the mechanisms underlying how cells in our brain change in response to experiences, but this approach gives us a new window into the process,” says Hollis Cline, Ph.D., the Hahn Professor and Chair of Neuroscience at Scripps Research and senior author of the new work. Two things take place when you learn something new: First, neurons in your brain immediately transmit electrical signals along new neural pathways. This eventually results in changes to the physical structure of brain cells and their connections. But for a long time, scientists have wondered what occurs between these two steps. How does the brain eventually undergo more substantial changes as a result of this electrical activity in neurons? Also, how and why does this plasticity deteriorate with aging and certain diseases? Tracking Proteins as Key Drivers of Plasticity Previously, researchers have studied how genes in neurons turn on and off in response to brain activity, hoping to get insight into plasticity. With the advent of high-throughput gene sequencing technologies, tracking genes in this way has become relatively easy. But most of those genes encode proteins—the real workhorses of cells, the levels of which are more difficult to monitor. But Cline, in close collaboration with Scripps professor John Yates III, Ph.D., and associate professor Anton Maximov, Ph.D., wanted to look directly at how proteins in the brain change. “We wanted to jump into the deep end of the pool and see what proteins are important to brain plasticity,” says Cline. The team designed a system in which they could introduce a specially tagged amino acid—one of the building blocks of proteins—into one type of neuron at a time. As the cells produced new proteins, they would incorporate this amino acid, azidonorleucine, into their structures. By tracking which proteins contained the azidonorleucine over time, the researchers could monitor newly made proteins and distinguish them from pre-existing proteins. Cline’s group used the azidonorleucine to track which proteins were made after mice experienced a large and widespread spike in brain activity, mimicking what happens at a smaller scale when we experience the world around us. The team focused on cortical glutamatergic neurons, a major class of brain cells responsible for processing sensory information. Protein Changes in Response to Neural Activity After the increase in neural activity, the researchers discovered levels of 300 different proteins changed in the neurons. While two-thirds increased during the spike in brain activity, the synthesis of the remaining third decreased. By analyzing the roles of these so-called “candidate plasticity proteins”, Cline and her colleagues were able to gain general insight into how they might impact plasticity. Many of the proteins are related to the structure and shape of neurons, for instance, as well as how they communicate with other cells. These proteins suggested ways in which brain activity can immediately begin to impact connections between cells. Additionally, a number of the proteins were related to how DNA is packaged inside cells; changing this packaging can change which genes a cell can access and use over a long time period. This suggests ways that a very short spike in brain activity can lead to more sustained remodeling within the brain. “This is a clear mechanism by which a change in brain activity can lead to waves of gene expression for many days,” says Cline. The researchers hope to use this method to discover and study additional candidate plasticity proteins, for instance those that might change in different types of brain cells after animals see a new visual stimulus. Cline says their tool also could offer insight into brain diseases and aging, through comparisons of how brain activity impacts protein production in young versus old and healthy versus diseased brains. Reference: “Activity-Induced Cortical Glutamatergic Neuron Nascent Proteins” by Lucio M. Schiapparelli, Yi Xie, Pranav Sharma, Daniel B. McClatchy, Yuanhui Ma, John R. Yates 3rd, Anton Maximov and Hollis T. Cline, 19 October 2022, JNeurosci. DOI: 10.1523/JNEUROSCI.0707-22.2022 The study was funded by the National Institutes of Health, the Hahn Family Foundation, and the Harold L. Dorris Neurosciences Center Endowment Fund.
DVDV1551RTWW78V
Taiwan neck support pillow OEM 》where innovation meets ergonomic comfort and market demandTaiwan ergonomic pillow OEM factory supplier 》the smart choice for brands seeking quality and customizationInnovative insole ODM solutions factory in Taiwan 》seamless coordination from idea to finished product